

Bezier splines, B-Splines, and NURBS

Expensive products are sleek and smooth.
\rightarrow Expensive products are C 2 continuous.

Shiny, but reflections are warped
History

- Continuity (smooth curves) can be essential to the perception of quality.
- The automotive industry wanted to design cars which were aerodynamic, but also visibly of high quality.
- Bezier (Renault) and de Casteljau (Citroen) invented Bezier curves in the 1960s. de Boor (GM) generalized them to B-splines.

History

The term spline comes from the shipbuilding industry: long, thin strips of wood or metal would be bent and held in place by heavy 'ducks', lead weights which acted as control points of the curve.
Wooden splines can be described by C_{n}-continuous Hermite polynomials which interpolate $n+1$ control points.

Beziers-a quick review

- A Bezier cubic is a function $\mathrm{P}(\mathrm{t})$ defined by four control points:
- P_{1} and P_{4} are the endpoints of the curve
- P_{2} and P_{3} define the other two corners of the bounding polygon.
- The curve fits entirely within the convex hull of $\mathrm{P}_{1} \ldots \mathrm{P}_{4}$.
- A degree- d Bezier is infinitely continuous
 throughout its interior. However, when joining two Beziers, careful placement of the control points is required to ensure continuity.

Cubic: $P(t)=(1-t)^{3} P_{1}+3 t(1-t)^{2} P_{2}+3 t^{2}(1-t) P_{3}+t^{3} P_{4}$

Beziers

Cubics are just one example of Bezier splines:

- Linear: $P(t)=(1-t) P_{1}+t P_{2}$
- Quadratic: $P(t)=(1-t)^{2} P_{1}+2 t(1-t) P_{2}+t^{2} P_{3}$
- Cubic: $P(t)=(1-t)^{3} P_{1}+3 t(1-t)^{2} P_{2}+3 t^{2}(1-t) P_{3}+t^{3} P_{4}$
...
General:

$$
P(t)=\sum_{i=0}^{n}\binom{n}{i}(1-t)^{n-i} t^{i} P_{i}, 0 \leq t \leq 1
$$

Bernstein polynomials

$P(t)=\underbrace{(1-t)^{3}} P_{1}+\underbrace{3 t(1-t)^{2}} P_{2}+\underbrace{3 t^{2}(1-t)} P_{3}+t^{t^{3} P_{4}}$ $)^{2}$

- The four control functions are the four Bernstein polynomials for $n=3$.
- General form: $b_{v, n}(t)=\binom{n}{v} t^{v}(1-t)^{n-v}$
- Bernstein polynomials in $0 \leq t \leq 1$ always sum to 1 :

$$
\sum_{v=1}^{n}\binom{n}{v} t^{v}(1-t)^{n-v}=(t+(1-t))^{n}=1
$$

Beziers

- You can describe Beziers as nested linear interpolations:
- The linear Bezier is a linear interpolation between two points: $P(t)=(1-t)\left(P_{t}\right)+(t)\left(P_{2}\right)$
- The quadratic Bezier is a linear interpolation between two lines: $P(t)=(1-t)\left((1-t) P_{1}+t P_{2}\right)+(t)\left((1-t) P_{2}+t P_{3}\right)$
- The cubic is a linear interpolation between linear interpolations between linear interpolations... etc.
- Another way to see Beziers is as a weighted average between the control points.

Joining Bezier splines

- To join two Bezier splines with C0 continuity, set $P_{4}=Q_{I}$.
- To join two Bezier splines with C1 continuity, require C 0 and make the tangent vectors equal: set $P_{4}=Q_{1}$ and $P_{4}-P_{3}=Q_{2}-Q_{1}$.

What if we want to chain Beziers together?

Consider a chain of splines with many control points.
$\mathrm{P}=\left\{\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}\right\}$ $\mathrm{Q}=\left\{\mathrm{Q}_{0}, \mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}\right\}$
$\mathrm{R}=\left\{\mathrm{R}_{0}, \mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}\right\}$ with Cl continuity.. $P 3=Q_{0}, P_{2}-P_{3}=Q_{0}-Q_{1}$ $\mathrm{Q} 3=\mathrm{R}_{0}, \mathrm{Q}_{2}-\mathrm{Q}_{3}=\mathrm{R}_{0}-\mathrm{R}_{1}$

We can parameterize this chain over t by saying that instead of going from 0 to $1, t$ moves smoothly through the intervals [0,1,2,3]

The curve $C(t)$ would be: $C(t)=P(t) \cdot((0 \leq t<1) ? 1: 0)+$ $Q(t-1) \cdot((1 \leq t<2) ? 1: 0)+$ $R(t-2) \cdot((2 \leq t<3) ? 1: 0)$
[$0,1,2,3$] is a type of knot vector. $0,1,2$, and 3 are the knots.

NURBS

- NURBS ("Non-Uniform Rational BSplines") are a generalization of Beziers.
- NU: Non-Uniform. The knots in the knot vector are not required to be uniformly spaced.
- R: Rational. The spline may be defined by rational polynomials (homogeneous coordinates.)
- BS: B-Spline. A generalization of Bezier splines with controllable degree.

B-Splines

- A Bezier cubic is a polynomial of degree three: it must have four control points, it must begin at the first and end at the fourth, and it assumes that all four control points are equally important.
- B-spline curves are a piecewise parameterization of a series of splines, that supports an arbitrary number of control points and lets you specify the degree of the polynomial which interpolates them.

B-Splines

We'll build our definition of a B-spline from:

- d, the degree of the curve
- $k=d+1$, called the parameter of the curve
- $\left\{P_{1} \ldots P_{n}\right\}$, a list of n control points
- $\left[t_{p}, \ldots, t_{k+n}\right]$, a knot vector of $(\mathrm{k}+\mathrm{n})$ parameter values
- $d=k-1$ is the degree of the curve, so k is the number of control points which influence a single interval.
- Ex: a cubic $(d=3)$ has four control points $(k=4)$.
- There are $k+n$ knots, and $t_{i} \leq t_{i+1}$ for all t_{i}
- Each B-spline is $\mathrm{C}^{(k-2)}$ continuous: continuity is degree minus one, so a $\mathrm{k}=3$ curve has $\mathrm{d}=2$ and is C 1 .

B-Splines

- The equation for a B-spline curve is

$$
P(t)=\sum_{i=1}^{n} N_{i, k}(t) P_{i}, t_{\min } \leq t<t_{\max }
$$

- $N_{i, k}(t)$ is the basis function of control point P_{i} for parameter $k . N_{i, k}(t)$ is defined recursively:

$$
\begin{aligned}
& N_{i, 1}(t)=\left\{\begin{array}{l}
1, t_{i} \leq t<t_{i+1} \\
0, \text { otherwise }
\end{array}\right. \\
& N_{i, k}(t)=\frac{t-t_{i}}{t_{i+k-1}-t_{i}} N_{i, k-1}(t)+\frac{t_{i+k}-t}{t_{i+k}-t_{i+1}} N_{i+1, k-1}(t)
\end{aligned}
$$

B-Splines

B-Splines $N_{i, k}(t)=\frac{t-t_{i}}{t_{i+k-1}-t_{i}} N_{i, k-1}(t)+\frac{t_{i+k}-t}{t_{i+k}-t_{i+1}} N_{i+1, k-1}(t)$

$$
\begin{aligned}
& N_{1,2}(t)=\frac{t-0}{1-0} N_{1,1}(t)+\frac{2-t}{2-1} N_{2,1}(t)=\left\{\begin{array}{cc}
t & 0 \leq t<1 \\
2-t & 1 \leq t<2
\end{array}\right. \\
& N_{2,2}(t)=\frac{t-1}{2-1} N_{2,1}(t)+\frac{3-t}{3-2} N_{3,1}(t)= \begin{cases}t-1 & 1 \leq t<2 \\
3-t & 2 \leq t<3\end{cases} \\
& N_{3,2}(t)=\frac{t-2}{3-2} N_{3,1}(t)+\frac{4-t}{4-3} N_{4,1}(t)= \begin{cases}t-2 & 2 \leq t<3 \\
4-t & 3 \leq t<4\end{cases} \\
& N_{4,2}(t)=\frac{t-3}{4-3} N_{4,1}(t)+\frac{5-t}{5-4} N_{5,1}(t)= \begin{cases}t-3 & 3 \leq t<4 \\
5-t & 4 \leq t<5\end{cases}
\end{aligned}
$$

$$
\text { Knot vector }=\{0,1,2,3,4,5\}, k=2 \rightarrow d=1 \text { (degree }=\text { one })^{18}
$$

Basis functions really sum to one ($k=2$)

B-Splines

Knot vector $=\{0,1,2,3,4,5\}$

Non-Uniform B-Splines

- The knot vector $\{0,1,2,3,4,5\}$ is uniform: $t_{1}-t_{i}=t,-t, \forall t$.
- Varying the size of an interval changes the parametricspace distribution of the weights assigned to the control functions.
- Repeating a knot value reduces the continuity of the curve in the affected span by one degree.
- Repeating a knot k times will lead to a control function being influenced only by that knot value; the spline will pass through the corresponding control point with C 0 continuity.

Open vs Closed

- A knot vector which repeats its first and last knot values k times is called open, otherwise closed.
- Repeating the knots k times is the only way to force the curve to pass through the first or last control point.
- Without this, the functions $N_{1, k}$ and $N_{n, k}$ which weight P_{l} and P_{n} would still be 'ramping up' and not yet equal to one at the first and last t_{i}.

Open vs Closed

- Two examples you may recognize:
- $k=3, n=3$ control points, knots $=\{0,0,0,1,1,1\}$
- $k=4, n=4$ control points, knots $=\{0,0,0,0,1,1,1,1\}$

Non-Uniform Rational B-Splines

- Repeating knot values is a clumsy way to control the curve's proximity to the control point.
- We want to be able to slide the curve nearer or farther without losing continuity or introducing new control points.
- The solution: homogeneous coordinates.
- Associate a 'weight' with each control point: ω_{i}.

Non-Uniform Rational B-Splines

- Recall: $[x, y, z, \omega]_{\mathrm{H}} \rightarrow[x / \omega, y / \omega, z / \omega]$ - Or: $[x, y, z, 1] \rightarrow[x \omega, y \omega, z \omega, \omega]_{\mathrm{H}}$
- The control point

$$
P_{i}=\left(x_{i}, y_{i}, z_{i}\right)
$$

becomes the homogeneous control point

$$
P_{i H}=\left(x_{i} \omega_{i}, y_{i} \omega_{i}, z_{i} \omega_{i}\right)
$$

- A NURBS in homogeneous coordinates is:

$$
P_{H}(t)=\sum_{i=1}^{n} N_{i, k}(t) P_{i H}, t_{\min } \leq t<t_{\max }
$$

Non-Uniform Rational B-Splines

- To convert from homogeneous coords to normal coordinates:
$x_{H}(t)=\sum_{i=1}^{n}\left(x_{i} \omega_{i}\right)\left(N_{i, k}(t)\right)$
$y_{H}(t)=\sum_{i=1}^{n}\left(y_{i} \omega_{i}\right)\left(N_{i, k}(t)\right)$
$z_{H}(t)=\sum_{i=1}^{n}\left(z_{i} \omega_{i}\right)\left(N_{i, k}(t)\right)$
$\omega(t)=\sum_{i=1}^{n}\left(\omega_{i}\right)\left(N_{i, k}(t)\right)$

Non-Uniform Rational B-Splines

- A piecewise rational curve is thus defined by:
$P(t)=\sum_{i=1}^{n} R_{i, k}(t) P_{i}, t_{\min } t<t_{\max }$
wıu suppōtung rauonau vasts juncuons:
$R_{i, k}(t)=\frac{\omega_{i} N_{i, k}(t)}{\sum_{j=1}^{n} \omega_{j} N_{j, k}(t)}$
This is essentially an average re-weighted by the ω 's.
- Such a curve can be made to pass arbitrarily far or near to a control point by changing the corresponding weight.

Non-Uniform Rational B-Splines in action

Tensor product

- The tensor product of two vectors is a matrix.

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \otimes\left[\begin{array}{l}
d \\
e \\
f
\end{array}\right]=\left[\begin{array}{lll}
a d & a e & a f \\
b d & b e & b f \\
c d & c e & c f
\end{array}\right]
$$

- Can also take the tensor of two polynomials.
- Each coefficient represents a piece of each of the two original expressions, to the cumulative polynomial represents both original polynomials completely.

NURBS patches

- The tensor product of the polynomial coefficients of two NURBS splines is a matrix of polynomial coefficients.
- If curve A has parameter k and n control
 points and curve B has parameter j and m control points then $\mathrm{A} \otimes \mathrm{B}$ is an $(n) \mathrm{X}(m)$ matrix of polynomials of parameter max (j, k).
- Multiply this matrix against an $(n) \times(m)$ matrix of control points and sum them all up and you've got a bivariate expression for a rectangular surface patch, in 3D
- This approach generalizes to triangles and arbitrary n-gons.

NURBS patches aren't the greatest

- NURBS patches are $n \times m$, forming a mesh of quadrilaterals.
- What if you wanted triangles or pentagons?
- A NURBS dodecahedron?
- What if you wanted vertices of valence other than four?
- NURBS expressions for triangular patches, and more, do exist; but they're cumbersome.

Problems with NURBS patches

- Joining NURBS patches with C_{n} continuity across an edge is challenging.
- What happens to continuity at corners where the number of patches meeting isn't exactly four?
- Animation is tricky: bending and blending are doable, but not easy.

References

- Les Piegl and Wayne Tiller, The NURBS Book, Springer (1997)
- Alan Watt, 3D Computer Graphics, Addison Wesley (2000)
- G. Farin, J. Hoschek, M.-S. Kim, Handbook of Computer Aided Geometric Design, North-Holland (2002)

$$
35
$$

$$
\square
$$

Subdivision surfaces

- Beyond shipbuilding: we want guaranteed continuity, without having to build everything out of rectangular patches.
- Applications include CAD/CAM, 3D printing, museums and scanning, medicine, movies...
- The solution: subdivision surfaces.

Subdivision surfaces

- Instead of ticking a parameter t along a parametric curve (or the parameters u, v over a parametric grid), subdivision surfaces repeatedly refine from a coarse set of control points.
- Each step of refinement adds new faces and vertices.
- The process converges to a smooth limit surface.

Subdivision surfaces and the movies

- Pixar first demonstrated subdivision surfaces in 1997 with Geri's Game.
- Up until then they'd done everything in NURBS (Toy Story, A Bug's Life.)
- From 1999 onwards everything they did was with subdivision surfaces (Toy Story 2, Monsters Inc, Finding Nemo...)
- Two decades on, it's all heavily customized.
- It's not clear what Dreamworks uses, but they have recent patents on subdivision techniques.

How it works

- Example: Chaikin curve subdivision (2D)
- On each edge, insert new control points at $1 / 4$ and $3 / 4$ between old vertices; delete the old points
- The limit curve is C 1 everywhere (despite the poor figure.)

Notation

Chaikin can be written programmatically as:
$P_{2 i}^{k+1}=(3 / 4) P_{i}^{k}+(1 / 4) P_{i+1}^{k} \leftarrow$ Even
$P_{2 i+1}^{k+1}=(1 / 4) P_{i}^{k}+(3 / 4) P_{i+1}^{k} \longleftarrow O d d$
\ldots where k is the 'generation'; each generation will have twice as many control points as before.
Notice the different treatment of generating odd and 1 even control points.
Borders (terminal points) are a special case.

Notation

- The standard notation compresses the scheme to a kernel:
- $h=(1 / 4)[\ldots, 0,0,1,3,3,1,0,0, \ldots]$
- The kernel interlaces the odd and even rules.
- It also makes matrix analysis possible: eigenanalysis of the matrix form can be used to prove the continuity of the subdivision limit surface.
- The details of analysis are fascinating and beyond the scope of this course; check out Malcolm Sabin's lecture series,
"Computer Aided Geometric Design", over at the CMS.
- The limit curve of Chaikin is a quadratic B-spline!

Notation

Chaikin can be written in vector notation as:

Reading the kernel

Consider the kernel

$$
h=(1 / 8)[\ldots, 0,0,1,4,6,4,1,0,0, \ldots]
$$

You would read this as
$P_{2 i}^{k+1}=(1 / 8)\left(P_{i-1}^{k}+6 P_{i}^{k}+P_{i+1}^{k}\right)$
$P_{2 i+1}^{k+1}=(1 / 8)\left(4 P_{i}^{k}+4 P_{i+1}^{k}\right)$

The limit curve is provably C 2 -continuous.

Making the jump to 3D: Doo-Sabin
Doo-Sabin takes Chaikin to 3D: $P=(9 / 16) A+$
(3/16) $B+$
(3/16) $C+$
(1/16) D
This replaces every old vertex with four new vertices.
The limit surface is biquadratic, C1 continuous everywhere.

Doo-Sabin in action

(0) 18 faces

(2) 190 faces

(1) 54 faces

(3) 702 faces

Catmull-Clark

- Catmull-Clark is a bivariate approximating scheme with kernel $h=(1 / 8)[1,4,6,4,1]$.
- Limit surface is bicubic, C2-continuous.

Catmull-Clark
Getting tensor again:

$$
\left.\frac{1}{8}\left[\begin{array}{l}
1 \\
4 \\
6 \\
4 \\
1
\end{array}\right] \otimes \frac{1}{8}\left[\begin{array}{l}
1 \\
4 \\
6 \\
4 \\
1
\end{array}\right]=\frac{1}{64}\left[\begin{array}{ccccc}
1 & 4 & 6 & 4 & 1 \\
\hline 4 & 16 & 24 & 16 & 4 \\
\hline 6 & 24 & 36 & 24 & 6 \\
4 & 16 & 24 & 16 & 4 \\
1 & 4 & 6 & 4 & 1
\end{array}\right]\right)
$$

Catmull-Clark vs Doo-Sabin

Doo-Sabin

Catmull-Clark

Extraordinary vertices

- Catmull-Clark and Doo-Sabin both operate on quadrilateral meshes. - All faces have four boundary edges
- What happens when the mesh contain
- What happens when the mesh contains extraordinary vertices or faces?
- For many schemes, adaptive weights exist which can continue to guarantee at least some (non-zero) degree of continuity, but not always the best possible.
- CC replaces extraordinary faces with extraordinary vertices; DS replaces extraordinary vertices with extraordinary faces.

Extraordinary vertices: Catmull-Clark
Catmull-Clark vertex rules generalized for extraordinary vertices:

- Original vertex:

$$
(4 n-7) / 4 n
$$

- Immediate neighbors in the one-ring:
$3 / 2 n^{2}$
- Interleaved neighbors in the one-ring: $1 / 4 n^{2}$

Creases

Extensions exist for most schemes to support creases, vertices and edges flagged for partial or hybrid subdivision.

Direct evaluation of the limit surface

- In the 1999 paper Exact Evaluation Of CatmullClark Subdivision Surfaces at Arbitrary Parameter Values, Jos Stam (now at Alias| Wavefront) describes a method for finding the exact final positions of the CC limit surface.
- His method is based on calculating the tangent and normal vectors to the limit surface and then shifting the control points out to their final positions.
- What's particularly clever is that he gives exact evaluation at the extraordinary vertices. (Non-trivial.)

Loop subdivision

Continuous level of detail

For live applications (e.g. games) can compute continuous level of detail, e.g. as a function of distance:

Bounding boxes and convex hulls for subdivision surfaces

- The limit surface is (the weighted average of (the weighted averages of (the weighted averages of (repeat for eternity...)))) the original control points.
- This implies that for any scheme where all weights are positive and sum to one, the limit surface lies entirely within the convex hull of the original control points.
- For schemes with negative weights:
- Let $L=\max _{\mathrm{t}} \Sigma_{i}\left|N_{i}(t)\right|$ be the greatest sum throughout parameter space of the absolute values of the weights.
- For a scheme with negative weights, L will exceed 1
- Then the limit surface must lie within the convex hull of the original control points, expanded unilaterally by a ratio of ($L-1$).

Splitting a subdivision surface

Many algorithms rely on subdividing a surface and examining the bounding boxes of smaller facets.

- Rendering, ray/surface intersections...

It's not enough just to delete half your control points: the limit surface will change (see right)

- Need to include all control points from the previous generation, which influence the limit surface in this smaller part.

\square

Ray/surface intersection

- To intersect a ray with a subdivision surface, we recursively split and split again, discarding all portions of the surface whose bounding boxes / convex hulls do not lie on the line of the ray.
- Any subsection of the surface which is 'close enough' to flat is treated as planar and the ray/plane intersection test is used.
- This is essentially a binary tree search for the nearest point of intersection.
- You can optimize by sorting your list of subsurfaces in increasing order of distance from the origin of the ray.

Rendering subdivision surfaces

- The algorithm to render any subdivision surface is exactly the same as for Bezier curves:
- "If the surface is simple enough, render it directly; otherwise split it and recurse."
- One fast test for "simple enough" is,
- "Is the convex hull of the limit surface sufficiently close to flat?"
- Caveat: splitting a surface and subdividing one half but not the other can lead to tears where the different resolutions meet. \rightarrow

Subdivision Schemes-A partial list

- Approximating
- Quadrilateral
- (1/2) $[1,2,1]$
(1/4) $[1,3,3,1]$ (Doo-Sabin)
- $(1 / 8)[1,4,6,4,1]$ (Catmull-Clark)
- Mid-Edge
- Triangles
- Loop
- Interpolating
- Quadrilateral
- Kobbelt
- Triangle
- Butterfly
- " $\sqrt{ } 3$ "Subdivision

Many more exist, some much more complex
This is a major topic of ongoing research

Rendering subdivision surfaces on the GPU

- Subdivision algorithms have been ported to the GPU, often using geometry shaders.
- This subdivision can be done completely independently of geometry, imposing no demands on the CPU.
- Uses a complex blend of precalculated weights and shader logic
- Impressive effects in use at id, Valve, etc!

 Tamy Boubckeur \& Christophe Schlick (2005)
LaBRI INRIA CNRS University of Bordcaux, France

References

- Catmull, E., and J. Clark. "Recursively Generated B-Spline Surfaces on

Arbitrary Topological Meshes." Computer Aided Design, 1978

- Dyn, N., J. A. Gregory, and D. A. Levin. "Butterfly Subdivision Scheme for Surface Interpolation with Tension Control." ACM Transactions on
- Halstead, M., M. Kass, and T. DeRose. "Efficient, Fair Interpolation Using
- Zatmull-Clark Surfaces." Siggraph '93. p. 35.

Zorin, D. "Stationary Subdivision and Multiresolution Surface
Representations." Ph.D. diss., California Institute of Technology, 1997 ,

- Ignacio Castano, "Next-Generation Rendering of Subdivision Surfaces."
- Dennis Zorin', $\frac{\text { sttp://developer.nvidia.com/object/siggraph-2008-Subdiv.htm }}{}$ Animation", http://www.mrl.nyu.edu/publications/subdiv-course2000/

Lecture 3

Implicit Surfaces, Voronoi Diagrams, Voxels and more
Alex Benton, University of Cambridge - A.Benton@damtp.cam.aœ̧みk

How it works

The user controls a set of control points, like NURBS; each point in space generates a field of force, which drops off as a function of distance from the point (like gravity weakening with distance.)
This 3D field of forces defines an implicit surface: the set of all the points in space where some mathematical function (in this case, the value of the

Implicit surfaces
Implicit surface modeling ${ }^{(1)}$ is a way to produce very 'organic' or 'bulbous' surfaces very quickly without subdivision or NURBS
Uses of implicit surface modelling:

- Organic forms and nonlinear
- shapes
- Scientific modeling (electron orbitals, gravity shells in space,
some medical imaging)
- Muscles and joints with skin
- Rapid prototyping
- CAD/CAM solid geometry

rivicave soriageontiy

(1) AKA "metaball modeling"," force
functions", "blobby modeling"

Force functions

A few popular force field functions:

- "Blobby Molecules" - Jim Blinn

$$
\mathrm{F}(\mathrm{r})=\mathrm{a} \mathrm{e}^{-\mathrm{br} 2}
$$

- "Metaballs" - Jim Blinn
$F(r)= \begin{cases}a\left(1-3 r^{2} / b^{2}\right) & 0 \leq r<b / 3 \\ (3 a / 2)(1-r / b)^{2} & b / 3 \leq r<b \\ 0 & b \leq r\end{cases}$
- "Soft Objects" - Wyvill \& Wyvill

$$
\mathrm{F}(\mathrm{r})=\mathrm{a}\left(1-4 \mathrm{r}^{6} / 9 \mathrm{~b}^{6}+17 \mathrm{r}^{4} / 9 \mathrm{~b}^{4}-22 \mathrm{r}^{2} / 9 b^{2}\right)
$$

Discovering the surface

An octree is a recursive subdivision of space which "homes in" on the surface, from larger to finer detail.

- An octree encloses a cubical volume in space. You evaluate the force function $\mathrm{F}(v)$ at each vertex v of the cube.
- As the octree subdivides and splits into smaller octrees, only the octrees which contain some of the surface are processed; empty octrees are discarded.

Polygonizing the surface

To display a set of octrees, convert the octrees into polygons.

- If some corners are "hot" (above the force limit) and others are "cold" (below the force limit) then the implicit surface crosses the cube edges in between.
- The set of midpoints of adjacent crossed edges forms one or more rings, which can be triangulated. The normal is known from the hot/cold direction on the edges.
To refine the polygonization, subdivide recursively; discard any child whose vertices are all hot or all cold.

Polygonizing the surface

There are fifteen possible
configurations (up to symmetry) of
hot/cold vertices in the cube. \rightarrow

- With rotations, that's 256 cases.

Beware: there are ambiguous cases in the polygonization which must be addressed separately. \downarrow

Polygonizing the surface

One way to overcome the ambiguities that arise from the cube is to decompose the cube into tretrahedra.

- A common decomposition is into five tetrahedra. \rightarrow
- Caveat: need to flip every other cube. (Why?)
- Can also split into six.

Another way is to do the subdivision itself on tetrahedra-no cubes at all.

Image from the Open Problem Garden

Smoothing the surface

Implicit surfaces -- demo

Improved edge vertices

- The naïve implementation builds polygons whose vertices are the midpoints of the edges which lie between hot and cold vertices.
- The vertices of the implicit surface can be more closely approximated by points linearly interpolated along the edges of the cube by the weights of the relative values of the force function.
- $t=(0.5-F(P 1)) /(F(P 2)-F(P 1))$
- $\mathrm{P}=\mathrm{P} 1+\mathrm{t}(\mathrm{P} 2-\mathrm{P} 1)$

Marching cubes

An alternative to octrees if you only want to compute the final stage is the marching cubes algorithm (Lorensen \& Cline, 1985):

- Fire a ray from any point known to be
- inside the surface.
- Using Newton's method or binary search, find where the ray crosses the surface - local sampling
- There may be many crossing
- Drop a cube around the intersection poin
- While there exists a cube which has at lea one hot vertex and at least one cold vertex on a side and no neighbor on that side, create a neighboring cube on that side Repeat.

arching cubes is common in medical imaging such as MRI scans. It was first demonstrated (and patented!) by researchers at GE in 1984, modeling a human spine.

Voxels and volume rendering

A voxel ("volume pixel") is a cube in space with a given color; like a 3D pixel.

- Voxels are often used for medical imaging, terrain, scanning and model reconstruction, and other very large datasets.
- Voxels usually contain color but could contain other data as well-flow rates (in medical imaging), density functions (analogous to implicit surface modeling), lighting data, surface normals, 3D texture coordinates, etc.
- Often the goal is to render the voxel data directly, not to polygonize it.

Volume ray casting

If speed can be sacrificed for accuracy, render voxels with volume ray casting

- Fire a ray through each pixel,
- Sample the voxel data along the ray computing the weighted average (trilinear filter) of the contributions t
the ray of each voxel it passes through
- Compute surface gradient from of each voxel from local sampling; generate surface normals; compute lighting with
the standard lighting equation;
- 'Paint' the ray from back to front, occluding more distant voxels with nearer voxels; this is the Painter's Algorithm for hidden-surface removal.

Voronoi diagrams

The Voronoi diagram ${ }^{(2)}$ of a set of points P_{i} divides space into 'cells', where each cell C_{i} contains the points in space closer to P_{i} than any other P_{i}.
The Delaunay triangulation is the dual of the Voronoi diagram: a graph in which an edge connects every P_{i} which share a common edge in the Voronoi diagram.

Voronoi diagrams

Given a set $S=\left\{p_{I}, p_{2}, \ldots, p_{n}\right\}$, the formal definition of a Voronoi cell $C\left(S, p_{j}\right)$ is
$C\left(S, p_{i}\right)=\left\{p \in R^{d}| | p-p_{i}\left|<\left|p-p_{i}\right|, \mathrm{i} \neq \mathrm{J}\right\}\right.$ The p_{i} are called the generating points of the diagram.

Where three or more boundary edges meet is a Voronoi point. Each Voronoi point is at the center of a circle (or sphere, or hypersphere...) which passes through the associated generating points and which is guaranteed to be empty of all other generating points.

Delaunay triangulations and equi-angularity
The equiangularity of any triangulation of a set of points S is a sorted list of the angles ($\alpha_{1} \ldots \alpha_{3 t}$) of the triangles.

- A triangulation is said to be equiangular if it possesses lexicographically largest equiangularity amongst all possible triangulations of S
- The Delaunay triangulation
 is equiangular.

Image from Handbook of Computational Geometry
(2000) Jörg-Rüdiger Sack (2000) Jörg-Rüdiger Sack and Jorge Urrutia, p. 227

Delaunay triangulations and empty circles

Voronoi triangulations have the empty circle property: in any Voronoi triangulation of S, no point of S will lie inside the circle circumscribing any three points sharing a triangle in the Voronoi diagram.

Delaunay triangulations and convex hulls

The border of the Delaunay triangulation of a set of points is always convex

- This is true in 2D, 3D, 4D...

The Delaunay triangulation of a set of points in R^{n} is the planar projection of a convex hull in R^{n+1}.

- Ex: from 2D $\left(P_{i}=\{x, y\}_{i}^{\prime}\right)$, loft the points upwards, onto a parabola in 3D $\left(P_{i}^{\prime}=\left\{x, y, x^{2}+y^{2}\right\}\right.$ ${ }_{i}$). The resulting polyhedral mesh will still be convex in 3D.

Voronoi diagrams and the medial axis

The medial axis of a surface is the set of all points within the surface equidistant to the two or more nearest points on the surface.

- This can be used to extract a skeleton of the surface, for (for example) path-planning solutions, surface deformation, and animation.

Finding the Voronoi diagram

There are four general classes of algorithm for computing the Delaunay triangulation:

- Divide-and-conquer
- Sweep plane
- Fortune's algorithm \rightarrow
- Incremental insertion
- "Flipping": repairing an existing triangulation until it becomes Delaunay

Voronoi cells in 3D

Silvan Oesterle, Michael Knauss

Particle systems

Particle systems are a monte-carlo style technique which uses thousands (or millions) or tiny graphical artefacts to create large-scale visual effects.

Particle systems are used for hair, fire smoke, water, spores, clouds, explosion energy glows, in-game special effects and much more.

The basic idea:
"If lots of little dots all do something the same way, our brains will see the thing they do and not the dots doing it.'
 A particle system
created with 3 dengfx,
from wikipedia from wikipedia.

History of particle systems

- 1962: Ships explode into pixel clouds in
"Spacewar!", the $2^{\text {nd }}$ video game ever.
- 1978: Ships explode into broken lines in "Asteroid"
- 1982: The Genesis Effect in "Star Trek II: The Wrath of Khan".

Fanboy note: You can play the original Spacewar at http; $\frac{/ \text { spacewar.oversigma.col } /- \text {-the actual original game, running in } a}{P D P-1 \text { emulated in a Java applet. }} 93$
"The Genesis Effect" - William Reeves Star Trek II: The Wrath of Khan (1982)

Particle systems

How it works:

- Particles are generated from an emitter.
- Emitter position and orientation are specified discretely;
- Emitter rate, direction, flow, etc are often specified as a bounded random range (monte carlo)
- Time ticks; at each tick, particles move
- New particles are generated; expired particles are
- Forces (gravity, wind, etc) accelerate each particle
- Acceleration changes velocity
- Particles are rendered.

Particle systems-implementations

Closed-form function:

- Represent every particle as a parametric equation; store only the initial position p_{p}, initial velocity v_{0}, then apply fixed acceleration (such as gravity g.) $\bullet p(t)=p_{o}+v_{o} t+1 / 2 g t^{2}$
No storage of state \rightarrow small

Discrete integration:

- Update every particle separately; this can be expressed as a loop over a list, or as a mutation of a massive matrix multiplication operation (if using CUDA)
memory footprint
- Very limited possibility of

Best for fire, projectiles, etc-non-responsive particles.

NVIDIA: Position Based Fluids

References

$\frac{\text { Voronoi diagrams }}{\text { M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, "Computational Geometry: Algorithms and Applications", Springer-Verlag, }}$

Implicit modelling:
D. Ricti, A Constructive Geomerty yor Computer Graphics, Computer Journal, May 1973
IBloomenthal Polvyonization of Implicit Surfaces, Computer Aided Gieometric Design, Is
Bloomenthal Poltyonization of Implicit Suffaces, Computer Aided Geometric Design, Issue 5, 1988
B Wyvill, C McPheeters, G Wyill, Soft Objects, Advanced Computer Graphics (Proc, CG Te
B Wyvill, C McPheeters, G Wyvill, Animating Sofit Objects, The Visual Computer, Issue 41986
hitp:/astronomy.swinecul.au-pbourkermodelingy Mmplicitsurti)
Itp://www.cs.berkeley. edu/--iob/Paperssturk-2002-MIS.pdf

Voxels:
V. Wilhelss and A. Van Gelder, A Coherent Projection Approach for Direct Volume Rendering, Computer Graphics, 35(4):275-284,
July 1991
July 1991.
putp:/len. wikipedia.org/wiki/Volume ray casting
William T. Reeves, "Particle Systems - A Technique for Modeling a Class of Fuzzy Objects", Computer Graphics 17:3 pp. 359-376,
Lutz Latta, Building a Million Particle System, hthp:/www.21d.de/gdc2004/MegaParticlesPaper.pdf, 2004
http://en.wikipedia.orp/wiki/Particle system
hatp//www.darwin3d.com/gamedevelarticles

Querying your geometry

Given a polygonal model, how might you find...

- the normal at each vertex?
- the curvature at each vertex?
- the convex hull?
- the bounding box?
- the center of mass?

Querying your geometry

"Here's some geometry. What can we know?"

- A recurring theme here will be,
"The polygons are not the shape: the polygons approximate the surface of the shape."
- Some questions from we could ask (e.g. raypolygon intersection) are about the actual polygons.
- But other questions, like the normal at a vertex, are really about approximating the underlying surface as closely as possible.

Normal at a vertex

Expressed as a limit,

The normal of surface S at point P is the limit of the cross-product between two (non-collinear) vectors from P to the set of points in S at a distance r from P as r goes to zero. [Excluding orientation.]

Normal at a vertex

Using the limit definition, is the 'normal' to a discrete surface necessarily a vector?

- The normal to the surface at any point on a face is a constant vector.
- The 'normal' to the surface at any edge is an arc swept out on a unit sphere between the two normals of the two faces.
- The 'normal' to the surface at a vertex is a space swept out on the unit sphere between the normals of all of the adjacent faces.

Finding the normal at a vertex

Method 1: Take the average of the normals of surrounding polygons

Problem: splitting one adjacent face into 10,000 shards would skew the average

Finding the normal at a vertex

Method 2: Take the weighted average of the normals of surrounding polygons, weighted by the area of each face

- 2a: Weight each face normal by the area of the face divided by the total number of vertices in the face

Problem: Introducing new edges into a neighboring face (and thereby reducing its area) should not change the normal. Should making a face larger affect the normal to the surface near its corners?

- Argument for yes: If the vertices interpolate the 'true' surface, then stretching the surface at a then stretching the surface at a
distance could still change the distance could
local normals.

Finding the normal at a vertex

Method 3: Take the weighted average of the normals of surrounding polygons, weighted by each polygon's face angle at the vertex
$\alpha\left(F, v_{i}\right)=\cos ^{-1}\left(\frac{v_{i+1}-v_{i}}{\left|v_{i+1}-v_{i}\right|} \bullet \frac{v_{i-1}-v_{i}}{\left|v_{i-1}-v_{i}\right|}\right)$
$N(v)=\frac{\sum_{F} \alpha(F, v) N_{F}}{\left|\sum_{F} \alpha(F, v)\right|}$

Face angle: the angle α formed at the vertex v by the vectors to the next and previous vertices in the face F

Gaussian curvature on smooth surfaces

Informally speaking, the curvature of a surface expresses "how flat the surface isn't".

- One can measure the directions in which the surface is curving most; these are the directions of principal curvature, k_{1} and k_{2}.
- The product of k_{1} and k_{2} is the scalar Gaussian curvature.

Gaussian curvature on smooth surfaces

Formally, the Gaussian curvature of a region on a surface is the ratio between the area of the surface of the unit sphere swept out by the normals of that region and the area of the region itself. The Gaussian curvature of a point is the limit of this ratio as the region tends to zero area.

Angle deficit - a better solution for measuring discrete curvature

The angle deficit $A D(v)$ of a vertex v is defined to be two π minus the sum of the face angles of the adjacent faces.

$$
A D(v)=2 \pi-\sum_{F} \alpha(F, v)
$$

Genus, Poincaré and the Euler Characteristic

- Formally, the genus g of a closed surface is
..."a topologically invariant property of a surface defined as the largest number of nonintersecting simple closed curves that can be drawn on the surface without separating it." --mathworld.com
- Informally, it's the number of coffee cup handles in the surface.

Genus, Poincaré and the Euler Characteristic

Given a polyhedral surface S without border where:

- $V=$ the number of vertices of S,
- $E=$ the number of edges between those vertices,
- $F=$ the number of faces between those edges,
- χ is the Euler Characteristic of the surface,
the Poincaré Formula states that:

$$
V-E+F=2-2 g=\chi
$$

Genus, Poincaré and the Euler Characteristic

Convex hull

The convex hull of a set of points is the unique surface of least area which contains the set.

- If a set of infinite half-planes have a finite non-empty intersection, then the surface of their intersection is a convex polyhedron.
- If a polyhedron is convex then for any two faces A and B in the polyhedron, all points in B which are not in A lie to the same side of the plane containing A.
Every point on a convex hull has non-negative angle deficit.
The faces of a convex hull are always convex.

Cube:
Tetrahedron:

- $\chi=2-2 g=2$
- $\chi=2-2 g=2$
- $A D(v)=\pi / 2$
- $A D(v)=\pi$

$$
8(\pi / 2)=4 \pi=2 \pi \chi \quad \quad \cdot 4(\pi)=4 \pi=2 \pi \chi
$$

The Euler Characteristic and angle deficit

Descartes' Theorem of Total Angle Deficit states that on a surface S with Euler characteristic χ, the sum of the angle deficits of the vertices is $2 \pi \chi$:

$$
\sum_{S} A D(v)=2 \pi \chi
$$

Finding the convex hull of a set of points

Method 1: For every triple of points in the set, define a plane P. If all other points in the set lie to the same side of P (dot-product test) then add P to the hull; else discard.

Problem 1: this works but it's $O\left(n^{4}\right)$.

Finding the convex hull of a set of points
Method 2:

- Initialize C with a tetrahedron from any four non-colinear points in the set. Orient the faces of C by taking the dot product of the center of each face with the average of the vertices of C.
- For each vertex v,
- For each face f of C,
- If the dot product of the normal of f with the vector from the center of f to v
is positive then v is 'above' f.
- If v is above f then delete f and update a (sorted) list of all new border
vertices.
- Create a new triangular face from v to each pair of border vertices

Problem 2:
This is $O\left(n^{2}\right)$ at best.

Finding the convex hull of a set of points

Method 3:
The exterior boundary of the union of the cells of the Delaunay triangulation of a set of points is its convex hull.

The exterior border of the Delaunay triangulation is the convex hull of the point
set.
Algorithm:

- Find the Voronoi diagram of your point set
- Compute the Delaunay triangulation (2D) or tetrahedralization (3D)
- Delete all faces of the simplices which aren't on the exterior border

Testing if a point is inside a convex hull

We can generalize Method 2 to test whether a point is inside any convex polyhedron.

- For each face, test the dot product of the normal of the face with a vector from the face to the point. If the dot is ever positive, the point lies outside.
- The same logic applies if you're storing normals at vertices.

Centroids

Method 1: Take the average of all vertices.
$\mathrm{C}=\left(\Sigma_{\{v,}(v)\right) /\|\{v\}\|$

Problem 1: as with normals, an area of bizarre density would skew the average.

Centroids

Method 2: Take the average of the centers of the faces of the surface, weighting each by the area of the face.

- This method works well for convex polyhedra.

Problem 2: This is vulnerable to dense 'wrinkles' of many polygons packed into a small volume.

Centroids

Method 3a: Use "Monte Carlo" integration. Find the bounding box of the surface and then choose billions of points at random inside the box; take the average of all those points which fall inside the those po
surface.

Problem 3a: Testing for 'inside' is time-consuming (although it can
be accelerated; try BSP trees.)
Also, this lacks precision. And, frankly, finesse.
Method 3b: Decompose the polyhedron into convex polyhedra, then use method 2 to find the center of each. Average the centers, weighting each point by the volume of its convex polyhedron.
Problem 3b: Convex decomposition is solved, but it's not trivial.

- Convex regions decompose
rapidly to tetrahedra
- Nonconvex regions can be tricky: tetrahedra may cross.

References

Gaussian Curvature
http $/ /$ en.wikikedia.orp $/$ wiki/Gaussian curvature
The Poincaré Formula: GaussianCurvature htm
The Poincare Formula
Convex Hulls
Tim Lambert's Java demos: http://www.cse.unsw.edu.au/-lambert/java/3d hull. html
Wolfram: http:/demonstrations.woifram.com/ConvextuliAndDelaunayTriangulatio
Bounding volumes
$\frac{\text { httpy //www.personal. kent.edu/-rmuhanma/Compgeometry/MyCG/CG-Applets/Center/centercli. htm }}{\text { M. Dyer and N. Megiddo, "Linear Programming in Low Dimensions" }}$

O'Rourke, Finding minimal enclosing boxes, Springer Netherlands, 1985
Centroids
kim tich, "Fast and Accurate Computation of Polyhedral Mass Properties", Journal of Graphics Tools v. 1 n.2, 1996.
Kim et al, "Fast GPU Computation of the Mass Properties of a General Shape and its Application to Buoyancy
Simulation", The Visual Computer v. 2 n. 9 -11, 2006 (Adapts Mirtich's method to use GPU hardware acceleration)

OpenGL

Ppengl.

OpenGL is...

- Hardware-independent
- Operating system independent
- Vendor neutral

On many platforms

- Great support on Windows, Mac, linux, etc
- Support for mobile devices with OpenGL ES
- Android, iOS (but not Windows Phone)
- Android Wear watches!
- Web support with WebGL

A state-based renderer

- many settings are configured before passing in data; rendering behavior is modified by existing state

Accelerates common 3D graphics operations

- Clipping (for primitives)
- Hidden-surface removal (Zbuffering)
- Texturing, alpha blending NURBS and other advanced primitives (GLUT)

OpenGL in Java

- JOGL: "Java bindings for OpenGL"
http://jogamp.org/jogl/
JOGL apps can be deployed as applications or as applets, making it suitable for educational web demos and cross-platform applications.
- If the user has installed the latest
- Java, of course.
- And if you jump through Oracle'
s authentication hoops.
- And... let's be honest, 1998 called, it wants its applets back.
- LWJGL: "Lightweight Java Games Library" http://www.lwjgl.org/
LWJGL is targeted at game developers, so it's got a really solid threading model and good support for new input methods like joysticks, gaming mice, and the Oculus

OpenGL architecture

The CPU (your processor and friend) delivers data to the GPU (Graphical Processing Unit).

- The GPU takes in streams of vertices, colors, texture coordinates and other data; constructs polygons and other primitives; then uses shaders to draw the primitives to the screen pixel-by-pixel.
- The GPU processes the vertices according to the state set by the CPU; for example, "every trio of vertices describes a triangle".
This process is called the rendering pipeline. Implementing the rendering pipeline is a joint effort between you and the GPU.

You'll write shaders in the OpenGL shader language, GLSL.
You'll write vertex and fragment shaders. (And maybe others.)

The OpenGL rendering pipeline

An OpenGL application assembles sets of primitives, transforms and image data, which it passes to OpenGL's GLSL shaders.

- Vertex shaders process every vertex in the primitives, computing info such as position of each one.
- Fragment shaders compute the color of every fragment of every pixel covered by every primitive.

After vertices are processed, polygons are rasterized. During rasterization, values like position, color, depth, and others are interpolated across the polygon. The interpolated values are passed to each pixel fragment.

Shader gallery I

Think parallel
Shaders are compiled from within your code

- They used to be written in assembler
- Today they're written in high-level languages

They execute on the GPU
GPUs typically have multiple processing units
That means that multiple shaders execute in parallel

- We're moving away from the purely-linear flow of early "C" programming models

Shader example one - ambient lighting

GLSL

Notice the C-style syntax void main() \{... \}
The vertex shader uses two inputs, one four-element vec4 and one four-by-four mat4 matrix; and one standard output, gl_Position.
The line gl_Position = mvp * gl_Vertex;
applies our model-view-projection matrix to calculate the correct vertex position in perspective coordinates.
This fragment shader implements the most basic ambient lighting by setting its one output, col, to a fixed value.

GLSL

The language design in GLSL is strongly based on ANSI C, with some $\mathrm{C}++$ added.

- There is a preprocessor--\#define, etc
- Basic types: int, float, bool
- No double-precision float
- Vectors and matrices are standard: vec2, mat2 $=2 \times 2$; vec3, $\mathbf{m a t} 3=3 \times 3 ;$ vec4, $\mathbf{m a t} 4=4 \times 4$
- Texture samplers: sampler1D, sampler2D, etc are used to sample multidemensional textures
- New instances are built with constructors, a la C++
- Functions can be declared before they are defined, and operator overloading is supported.

GLSL

Some differences from C/C++:

- No pointers, strings, chars; no unions, enums; no bytes, shorts, longs; no unsigned. No switch() statements.
- There is no implicit casting (type promotion):
float foo = 1;
fails because you can't implicitly cast int to float.
- Explicit type casts are done by constructor:
vec3 foo $=\operatorname{vec} 3(1.0,2.0,3.0)$;
vec2 bar = vec2(foo); // Drops foo.z
Function parameters are labeled as in, out, or uniform.
- Functions are called by value-return, meaning that values are copied into and out of parameters at the start and end of calls.

OpenGL / GLSL API - setup

To install and use a shader in OpenGL:
Create one or more empty shader objects with glCreateShader
Load source code, in text, into the shader with glShaderSource.
Compile the shader with
glCompileShader.
Create an empty program object with glCreateProgram.
Bind your shaders to the program with glAttachShader.
Link the program (ahh, the ghost of C!) with glLinkProgram
7. Activate your program with glUseProgram.

Shader gallery II

Above: Kevin Boulanger (PhD thesis, "Real-Time Realistic Rendering of Nature Scenes with Dynamic Lighting", 2005)

Above: Ben Cloward ("Car paint shader")

What will you have to write?

It's up to you to implement perspective and lighting.

1. Pass geometry to the GPU
2. Implement perspective on the GPU
3. Calculate lighting on the GPU

OpenGL / GLSL API - variables

GLSL shaders use named parameters which can be looked up from OpenGL.
GLSL $\left\{\begin{array}{l}\text { uniform mat4 modelToScreen; } \\ \text { in vec4 vPosition; }\end{array}\right.$
The OpenGL API looks up the location integers of these parameters and uses the location as an address:

- int attributeId $=$ glGetAttribLocation(program, OpenGL $\{$ "vPosition");
glEnableVertexAttribArray(attributeId); glVertexAttribPointer(attributeId, ...);

1. Passing geometry to OpenGL

Vertex buffer objects store arrays of vertex data-positional or descriptive. With a vertex buffer object ("VBO") you can compute all vertices at once, pack them into a VBO, and pass them to OpenGL en masse to let the GPU processes all the vertices together.
To group different kinds of vertex data together, you can serialize your buffers into a single VBO, or you bind and attach them to a Vertex Array Objects. Each vertex array object

Although not required, VAOs help you to organize and isolate the data in your VBOs.

First, we allocate a vertex array:
private void createAndBindVertexBuffer() \{
int vertexArrayId = glGenVertexArrays();
glBindVertexArray(vertexArrayId);
\}

Then we fill attach a vertex buffer with vertex coordinates: private void addVertexBuffer(String name, FloatBuffer data) \{
int BufferId = glGenBuffers();
glBindBuffer(GL_ARRAY_BUFFER, bufferId);
glBufferData(GL_ARRAY_BUFFER, data, GL_STATIC_DRAW);
int attributeId = glGetAttribLocation(program, name);
glEnableVertexAttribArray(attributeId);
glVertexAttribPointer(attributeId, 3, GL11.GL_FLOAT, false, 0, 0);

Vertex buffers contain vertex data

In Java, vertex data is typically packed into a FloatBuffer: static final float[][] CORNERS = \{
$\{-0.8 f, 0.8 f, 0.8 f\},\{0.8 f, 0.8 f, 0.8 f\},\{0.8 f, 0.8 f,-0.8 f\},\{-0.8 f, 0.8 f,-0.8 f\}$, $\{-0.8 f,-0.8 f, 0.8 f\},\{0.8 f,-0.8 f, 0.8 f\},\{0.8 f,-0.8 f,-0.8 f\},\{-0.8 f,-0.8 f,-0.8 f\}$,
);
static final int[] INDICES $=\{0,1,2,3,0,4,5,1,5,6,2,6,7,3,7,4\}$;
private void drawCube() \{
FloatBuffer vertices $=$ Buffers.newDirectFloatBuffer(INDICES.length * 3);
for (int index : INDICES) \{ vertices.put(CORNERS[index]); \}
vertices.rewind();
fillCurrentVertexBuffer("vPosition", vertices);
// ..
glorawarrays(GL_LINE_STRIP, 0, INDICES.length);
,
...and it's boring, because we have no 3D.

Binding multiple buffers in a VAO

Need more info? We can pass more than just coordinate data--we can create as many buffer objects as we want for different types of per-vertex data.

To bind two arrays of floats together, we build a vertex array object as before: int vertexArrayId = glGenVertexArrays(); glBindVertexArray(vertexArrayId);
We bind a vertex buffer object for coordinate data, then another for normals: addVertexBuffer("vPosition", vertices) addVertexBuffer("vNormal", normals);

Later, to render, we'll unbind the buffers and work only with the vertex array: glBindBuffer(GL_ARRAY_BUFFER, 0);
glDrawArrays(GL_LINE_STRIP, 0, INDICES.length);

Memory management:
 Lifespan of an OpenGL object

Most objects in OpenGL are created and deleted explicitly. Because these entities live in the GPU, they're outside the scope of Java's garbage collection.
The typical creation and deletion of an OpenGL object look like this:

Passing uniform data to GLSL

The method glGetUniformLocation() will look up the location of a uniform parameter in a shader program.
(This is analogous to the attribute lookup seen earlier.)
private void updateM4x4(String name, $M 4 \times 4$ T) \{ int uniform = glGetUniformLocation(program, name); if (uniform !=-1) \{ glUniformMatrix4(uniform, false, T.asFloats()); \}
\}

Procedural texturing in the fragment shader

For a limited set of generating points, can compute the Voronoi Diagram in the fragment shader.
Simple version: "F2-F1": find the nearest two generating points by iteration, render the isolines where their forces $=0$.
Better: With a two-pass solution, can generate the isolines within the cell as well (see link)

More advanced surface effects

- Specular highlighting
- Non-photorealistic illumination
- Volumetric textures
- Bump-mapping
- Interactive surface effects
- Ray-casting in the shader
- Higher-order math in the shader
- ...much, much more!

Ray tracing

- A powerful alternative to polygon scan-conversion techniques
- An elegantly simple algorithm:

Given a set of $3 D$ objects, shoot a ray from the eye through the center of every pixel and see what it hits.

Running time

The ray tracing time for a scene is a function of (num rays cast) x
(num lights) x
(num objects in scene) x
(num reflective surfaces) x (num transparent surfaces) x (num shadow rays) x (ray reflection depth) $\times \ldots$

Image by nVidia
Contrast this to polygon rasterization: time is a function of the number of elements in the scene times the number of lights.

Ray-traced illumination

Once you have the point P (the intersection of the ray with the nearest object) you'll compute how much each of the lights in the scene illuminates P .
diffuse $=0$
specular $=0$
for (each light L_{i} in the scene):
if $(N \cdot L)>0$:
[Optionally: if (a ray from P to L_{i} can reach L_{i}):

$$
\text { diffuse }+=k_{D}(N \cdot L)
$$

specular $+=k_{s}(R \cdot E)^{n}$
intensity at $P=$ ambient + diffuse + specular

Hitting things with rays

A ray is defined parametrically as

$$
P(t)=E+t D, t \geq 0
$$

where E is the ray's origin (our eye position) and D is the ray's direction, a unit-length vector.

We expand this equation to three dimensions, x, y and z :

$$
\begin{aligned}
& x(t)=x_{E}+t x_{D} \\
& y(t)=y_{E}+t y_{D} \\
& z(t)=z_{E}+t z_{D}
\end{aligned} \quad t \geq 0
$$

(β)

Hitting things with rays:
Sphere

The unit sphere, centered at the origin, has the implicit equation

$$
x^{2}+y^{2}+z^{2}=1
$$

Substituting equation (β) into (γ) gives
$\left(x_{E}+t x_{D}\right)^{2}+\left(y_{E}+t y_{D}\right)^{2}+\left(z_{E}+t z_{D}\right)^{2}=1$
which expands to
$t^{2}\left(x_{D}{ }^{2}+y_{D}{ }^{2}+z_{D}{ }^{2}\right)+t\left(2 x_{E} x_{D}+2 y_{E} y_{D}+2 z_{E} z_{D}\right)+\left(x_{E}{ }^{2}+y_{E}{ }^{2}+z_{E}{ }^{2}-1\right)=0$
which is of the form
$a t^{2}+b t+c=0$
which can be solved for t :

$$
t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

...giving us two points of intersection.

Hitting things with rays:
Cylinder

The infinite unit cylinder, centered at the origin, has the implicit equation $x^{2}+y^{2}=I$
Substituting equation (β) into (δ) gives
$\left(x_{E}+t x_{D}\right)^{2}+\left(y_{E}+t y_{D}\right)^{2}=1$
which expands to
$t^{2}\left(x_{D}{ }^{2}+y_{D}{ }^{2}\right)+t\left(2 x_{E} x_{D}+2 y_{E} y_{D}\right)+\left(x_{E}^{2}+y_{E}^{2}-1\right)=0$
which is of the form
$a t^{2}+b t+c=0$
which can be solved for t as before, giving us two points of intersection.

The cylinder is infinite; there is no z term.

Hitting things with rays:
Planes and polygons

A planar polygon P can be defined as

$$
\text { Polygon } P=\left\{v^{I}, \ldots, v^{n}\right\}
$$

which gives us the normal to P as

$$
N=\left(v^{n}-v^{l}\right) \times\left(v^{2}-v^{l}\right)
$$

The equation for the plane of P is

$$
\begin{equation*}
N \cdot\left(p-v^{l}\right)=0 \tag{ऽ}
\end{equation*}
$$

Substituting equation (α) into (ζ) for p yields
$N \cdot\left(E+t D-v^{l}\right)=0$
$x_{N}\left(x_{E}+t x_{D}-x_{v}^{l}\right)+y_{N}\left(y_{E}+t y_{D}{ }^{-} y_{v}^{l}\right)+z_{N}\left(z_{E}+t z_{D}-z_{v}^{l}\right)=0$
$t=\frac{\left(N \bullet v^{1}\right)-(N \bullet E)}{N \bullet D}$

Point in nonconvex polygon

Winding number

- The winding number of a point P in a curve C is the number of times that the curve wraps around the point.
- For a simple closed curve (as any wellbehaved polygon should be) this will be zero if the point is outside the curve, nonzero of it's inside.
- The winding number is the sum of the angles from v^{i} to P to v^{i+I}.
- Caveat: This method is elegant but slow.

Point in nonconvex polygon

Ray casting (1974)

- Odd number of crossings = inside
- Issues:
- How to find a point that you know is inside?

- What if the ray hits a vertex?
- Best accelerated by working in 2D
- You could transform all vertices such that the coordinate system of the polygon has normal $=\mathrm{Z}$ axis.
- Or, you could observe that crossings are invariant under scaling transforms and just project along any axis by ignoring (for example) the Z component.
- Validity proved by the Jordan curve theorem

The Jordan curve theorem

"Any simple closed curve C divides the points of the plane not on C into two distinct domains (with no plane not on C into two distinct domains (with
points in common) of which C is the common boundary."

- First stated (but proved incorrectly) by Camille Jordan (1838 -1922) in his Cours d'Analyse.
Sketch of proof : (For full proof see Courant \& Robbins, 1941.)
- Show that any point in A can be joined to any other point in A by a path which does not cross C, and likewise for B
- Show that any path connecting a point in A to a point in B must cross C.

Local coordinates, world coordinates

A very common technique in graphics is to associate a

The Jordan curve theorem on a sphere

Note that the Jordan curve theorem can be extended to a curve on a sphere, or anything which is topologically equivalent to a sphere.
"Any simple closed curve on a sphere separates the surface of the sphere into two distinct regions."

Local coordinates, world coordinates:

Finding the normal

Converting the normal from local to world coordinates

To find the world-coordinates normal N from the local-coordinates N_{L}, multiply N_{L} by the transpose of the inverse of the top left-hand 3×3 submatrix of T :

$$
N=\left(\left(T_{3 \times 3}\right)^{-1}\right)^{T} N_{L}
$$

- We want the top left 3×3 to discard translations
- For any rotation $Q,\left(Q^{-1}\right)^{T}=Q$
- Scaling is unaffected by transpose, and a scale of (a, b, c) becomes $(1 / a, 1 / b, 1 / c)$ when inverted
 point where a ray hits a primitive.
- If the ray R hits the primitive P at point X then N is...

Primitive type	Equation for N
Unit Sphere centered at the origin	$N=X$
Infinite Unit Cylinder centered at the origin	$N=\left[x_{X} y_{X} 0\right]$
Infinite Double Cone centered at the origin	$N=X \times\left(X \times\left[0,0, z_{X}\right]\right)$
Plane with normal n	$N=n$

We use the normal for color, reflection, refraction, shadow rays...

Local coordinates, world coordinates Summary

To compute the intersection of a ray $\mathrm{R}=\mathrm{E}+\mathrm{tD}$ with an object transformed by local-to-world transform T:

1. Compute R^{\prime}, the ray R in local coordinates, as $P^{\prime}(t)=T^{-1}(P(t))=T^{-1}(E)+t\left(T^{-1}{ }_{3 \times 3}(D)\right)$
2. Perform your hit test in local coordinates.
3. Convert all hit points from local coordinates back to world coordinates by multiplying them by T .
4. Convert all hit normals from local coordinates back to world coordinates by multiplying them by $\left(\left(T^{3 \times 3}\right)^{-1}\right)^{T}$.

This will allow you to efficiently and quickly fire rays at arbitrarily-transformed primitive objects.

Speed up ray-tracing with bounding volumes

Bounding volumes help to quickly accelerate volumetric tests, such as "does the ray hit the cow?"

- choose fast hit testing over accuracy
- 'bboxes' don't have to be tight

Axis-aligned bounding boxes

- max and min of $x / y / z$.

Bounding spheres

- max of radius from some rough center

Bounding cylinders

- common in early FPS games

Bounding volumes in hierarchy

Hierarchies of bounding volumes allow early discarding of rays that won't hit large parts of the scene.

- Pro: Rays can skip subsections of the hierarchy
- Con: Without spatial coherence ordering the objects in a volume you hit, you'll still have to hit-test every object

Subdivision of space

Split space into cells and list in each cell every object in the scene that overlaps that cell.

- Pro: The ray can skip empty cells
- Con: Depending on cell size, objects may overlap many filled cells or you may waste memory on many empty cells

Popular acceleration structures:

BSP Trees

Popular acceleration structures: $k d$-trees

The $k d$-tree is a simplification of the
BSP Tree data structure

- Space is recursively subdivided by axisaligned planes and points on either side of
each plane are separated in the tree.
- The $k \mathrm{~d}$-tree has $\mathrm{O}(n \log n)$ insertion time (but this is very optimizable by domain
knowledge) and $\mathrm{O}\left(n^{2 / 3}\right)$ search time.
- k d-trees don't suffer from the mathematical slowdowns of BSPs because their planes are always axis-aligned.

\qquad

Popular acceleration structures: Bounding Interval Hierarchies

The Bounding Interval Hierarchy subdivides space around the volumes of objects and shrinks each volume to remove unused space.

- Think of this as a "best-fit" kd-tree
- Can be built dynamically as each ray is fired into the scene

Image from Wächter and Keller's paper, Instant Ray Tracing: The Boundin
Hierarchy, Eurographics (2006)

Using OpenGL to accelerate ray-tracing
To accelerate first raycast, don't
raycast: use existing hardware.

- Use hardware rendering (eg OpenGL) to write to an offscreen buffer.
- Set the color of each primitive equal to a pointer to that primitive.
- Render your scene in gl with z-
buffering and no lighting.
- The 'color' value at each pixel in the buffer is now a pointer to the primitive under that pixel.

190

References

ordan curves

R. Courant, H. Robbins, What is Mathematics?, Oxford University Press, 1941 http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/97/Octavian/compgeom.html

ntersection testing

http://www.realtimerendering.com/intersections.htm
http://tog.acm.org/editors/erich/ptinpoly/
http://mathworld.wolfram.com/BarycentricCoordinates.html

Ray tracing

Foley \& van Dam, Computer Graphics (1995)
Jon Genetti and Dan Gordon, Ray Tracing With Adaptive Supersampling in Object Space,
http://www.cs.uaf.edu/~genetti/Research/Papers/GI93/GI.html (1993)
Zack Waters, "Realistic Raytracing", http://web.cs.wpi.
edu/~emmanuel/courses/cs563/write_ups/zackw/realistic_raytracing.html

Shadows

To simulate shadows in ray tracing, fire a ray from P towards each light L_{i}. If the ray hits another object before the light, then discard L_{i} in the sum.

- This is a boolean removal, so it will give hard-edged shadows.
- Hard-edged shadows suggest a pinpoint light source.

Softer shadows

Shadows in nature are not sharp because light sources are not infinitely small.

- Also because light scatters, etc.

For lights with volume, fire many rays, covering the crosssection of your illuminated space.
Illumination is scaled by (the total number of rays that aren't blocked) divided by (the total number of rays fired).

- This is an example of Monte-Carlo integration: a coarse simulation of an integral over a space by randomly sampling it with many rays.
- The more rays fired, the smoother the result.

Raytraced spotlights

To create a spotlight shining along axis S, you can multiply the (diffuse+specular) term by $(\max (L \cdot S, 0))^{m}$.

- Raising m will tighten the spotlight, but leave the edges soft.
- If you'd prefer a hard-edged spotlight of uniform internal intensity, you can use a conditional, e.g. $\left(\left(L \cdot S>\cos \left(15^{\circ}\right)\right) ? 1: 0\right)$.

Transparency

To add transparency, generate and trace a new transparency ray with $E_{T}=P, D_{T}=D$.

To support this in software, make color a $1 \mathrm{x} \underline{4}$ vector where the fourth component, 'alpha', determines the weight of the recursed transparency ray.

Refraction

The angle of incidence of a ray of light where it strikes a surface is the acute angle between the ray and the surface normal.
The refractive index of a material is a measure of how much the speed of light ${ }^{1}$ is reduced inside the material.

- The refractive index of air is about 1.003 .
- The refractive index of water is about 1.33.

Refraction in ray tracing

$\theta_{1}=\cos ^{-1}(N \bullet D)$
$\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{n_{2}}{n_{1}} \rightarrow \theta_{2}=\sin ^{-1}\left(\frac{n_{1}}{n_{2}} \sin \theta_{1}\right)$
Using Snell's Law and the angle of incidence of the incoming ray, we can calculate the angle from the negative normal to the outbound ray.

Anti-aliasing

Fundamentally, the problem with aliasing is that we're sampling an infinitely continuous function (the color of the scene) with a finite, discrete function (the pixels of the image).
One solution to this is super-sampling. If we fire multiple rays through each pixel, we can average the colors computed for every ray together to a single blended color.

- Fire a single ray through the pixel's center

Super-sampling

- Fire multiple rays through the pixel and average the result
- Regular grid, random, jittered, Poisson disks

Adaptive super-sampling

- Fire a few rays through the pixel, check the variance of the resulting values, if similar enough then stop else fire more rays

Types of super-sampling

Regular grid

- Divide the pixel into a number of sub-pixels and fire a ray through the center of each
- This can still lead to noticeable aliasing unless a very high resolution of sub-pixel grid is used
Random
- Fire N rays at random points in the pixel
- Replaces aliasing artifacts with noise artifacts
- But the human eye is much less sensitive to noise than to aliasing
- Requires special treatment for animation

Types of super-sampling

Jittered

- Divide the pixel into N sub-pixels and fire one ray at a random point in each sub-pixel
- Approximates the Poisson disk behavior

- Better than pure random sampling, easier (and significantly faster) to implement than Poisson

Texture mapping

As observed in last year's course, real-life objects rarely consist of perfectly smooth, uniformly colored surfaces.

Texture mapping is the art of applying an image to a surface, like a decal. Coordinates on the surface are mapped to coordinates in the texture.

UV mapping the primitives

UV mapping of a unit cube $\begin{aligned} & i f\|x\|==1: \\ & u=(z+1) / 2 \\ & v=(y+1) / 2 \end{aligned}$ elif $\|y\|==1$: $u=(x+1) / 2$ $v=(z+1) / 2$ else: $\begin{aligned} & u=(x+1) / 2 \\ & v=(y+1) / 2 \end{aligned}$	UV mapping of a unit sphere
	$u=0.5+\operatorname{atan2} 2(z, x)$
	$v=0.5-\operatorname{asin}(y) / \pi$
	UV mapping of a torus of
	major radius R
	$u=0.5+\operatorname{atan} 2(z, x) / 2 \pi$
	$v=0.5+\operatorname{atan} 2\left(y,\left(\left(x^{2}+z^{2}\right)^{1 / 2}-R\right) / 2 \pi\right.$
UV mapping is easy for primitives but	be very difficult for arbitrary shapes.

Texture mapping

One constraint on using images for texture is that images have a finite resolution, and a virtual (ray-traced) camera can get quite near to the surface of an object.

This can lead to a single image pixel covering multiple raytraced pixels (or viceversa), leading to blurry or aliased pixels in your texture.

Procedural volumetric texture

By mapping 3D coordinates to colors, we can create volumetric texture. The input to the texture is local model coordinates; the output is color and surface characteristics.
For example, to produce wood-grain texture, trees grow rings, with darker wood from earlier in the year and lighter wood from later in the year.

- Choose shades of early and late wood
- $f(P)=\left(X_{P}{ }^{2}+Z_{P}{ }^{2}\right) \bmod 1$
- $\operatorname{color}(P)=$ earlyWood + $f(P)$ * (lateWood - earlyWood)

Adding realism

The teapot on the previous slide doesn't look very wooden, because it's perfectly uniform. One way to make the surface look more natural is to add a randomized noise field to $\mathrm{f}(\mathrm{P})$:
$f(P)=\left(X_{P}{ }^{2}+Z_{P}{ }^{2}+\operatorname{noise}(P)\right) \bmod 1$
where $\operatorname{noise}(P)$ is a function that maps 3D coordinates in space to scalar values chosen at random.
For natural-looking results, use
Perlin noise, which interpolates smoothly between noise values.

Perlin noise 1

Perlin noise caches 'seed' random values on a grid at integer intervals. You'll look up noise values at arbitrary points in the plane, and they'll be determined by the four nearest seed randoms on the grid.
Given point (x, y), let $(s, t)=($ floor (x), floor $(y))$

For each grid vertex in
$\{(s, t),(s+1, t),(s+1, t+1),(s, t+1)\}$
choose and cache a random vector of length one.

Perlin noise 2

For each of the four corners, take the dot product of the random seed vector with the vector from that corner to (x, y). This gives you a unique scalar value per corner.

- As (x, y) moves across this cell of the grid, the values of the dot products will change smoothly, with no discontinuity.
- As (x, y) approaches a grid point, the contribution from that point will approach zero.
- The values of $L L, L R, U L, U R$ are clamped to a range close to $[-1,1]$.

Perlin noise 3

Tuning noise

Now we take a weighted average of $L L, L R, U L, U R$ Perlin noise uses a weighted averaging function chosen such that values close to zero and one are moved closer to zero and one, called the ease curve:
$S(t)=3 t^{2}-2 t^{3}$

We interpolate along one axis first: $L(x, y)=L L+S(x-$ floor $(x))(L R-L L)$ $U(x, y)=U L+S(x-$ floor $(x))(U R-U L)$
Then we interpolate again to merge the two upper and lower functions:
noise $(x, y)=$ $L(x, y)+S(y-$ floor $(y))(U(x, y)-L(x, y)) \xrightarrow{0.5}$
Voila!

Texture frequency			
$1 \rightarrow 3$	Noise frequency	Noise amplitude	$1 \rightarrow 3$

Normal mapping

Normal mapping applies the principles of texture mapping to the surface normal instead of surface color.

The specular and diffuse shading of the surface varies with the normals in a dent on the surface.

In a sense, the ray tracer computes a trompe-l'oeuil image on the fly and 'paints' the surface with more detail than is actually present in the geometry.

If we duplicate the normals, we don't have to duplicate the dent.

Lecture 8

Advanced Scenes and Global Illumination

Constructive Solid Geometry

Constructive Solid
Geometry (CSG) builds complicated forms out of simple primitives.

These primitives are combined with basic boolean operations: add, subtract, intersect.

Constructive Solid Geometry

CSG models are easy to ray-trace but difficult to polygonalize

- Issues include choosing polygon boundaries at edges; converting adequately from pure smooth primitives to discrete (flat) faces; handling 'infinitely thin' sheet surfaces; and others.
- This is an ongoing research topic.

CSG models are well-suited to machine milling, automated manufacture, etc

- Great for 3D printers!

Constructive Solid Geometry

Three operations:

1. Union

2. Intersection

3. Difference

Constructive Solid Geometry

For each node of the binary tree:

- Fire ray r at A and B.
- List in t-order all points where r enters of leaves A or B.

- You can think of each intersection as a quad of booleans-(wasIn A, isInA, wasInB, isIn B)
- Discard from the list all intersections which don't matter to the current boolean operation.
- Pass the list up to the parent node and recurse.

CSG surfaces can be described by a binary tree, where each leaf node is a primitive and each non-leaf node is a boolean operation.
(What would the not of a surface look like?)

Ray-tracing CSG models

Each boolean operation can be modeled as a state machine.
For each operation, retain those intersections that transition into or out of the critical state(s).

- Union:
(In A $|\operatorname{In} B| \operatorname{In} A$ and B)
- Intersection: \{In A and B\}
- Difference: $\{$ In A\}

Ray-tracing CSG models

Example: Difference (A-B)

$A-B$	Was In A	Is In	Was In B	Is In B
$\mathrm{t1}$	No	Yes	No	No
t 2	Yes	Yes	No	Yes
$\mathrm{t3}$	Yes	No	Yes	Yes
t 4	No	No	Yes	No

CSG in action

Radiosity

- Radiosity is an illumination method which simulates the global dispersion and reflection of diffuse light.
- First developed for describing spectral heat transfer (1950s)
- Adapted to graphics in the 1980 s at Cornell University

What's wrong with raytracing?

- Soft shadows are expensive
- Shadows of transparent objects require further coding or hacks
- Lighting off reflective objects follows
- different shadow rules from normal lighting
- Hard to implement diffuse reflection (color bleeding, such as in the Cornell Boxnotice how the sides are shaded red and green.)
- Fundamentally, the ambient term is a hack and the diffuse term is only one step in what should be a recursive, self-reinforcing series.

Radiosity—algorithm

- Surfaces in the scene are divided into form factors (also called patches), small subsections of each polygon or object.
- For every pair of form factors A, B, compute a view factor describing how much energy from patch A reaches patch B.
- The further apart two patches are in space or orientation, the less light they shed on each other, giving lower view factors.
- Calculate the lighting of all directly-lit patches.
- Bounce the light from all lit patches to all those they light, carrying more light to patches with higher relative view factors. Repeating this step will distribute the total light across the scene, producing a total illumination model. approach to global illumination: it breaks the scene into many small elements ('patches') and calculates the energy transfer between them.

Radiosity-mathematical support

The 'radiosity' of a single patch is the amount of energy leaving the patch per discrete time interval.
This energy is the total light being emitted directly from the patch combined with the total light being reflected by the patch:
$\underset{\text { wheré... }}{B_{i}}=E_{i}+R_{i} \sum_{i=1}^{n} B_{j} F_{i j}$
B_{i} is the radiosity of patch i;
B_{B} is the cumulative radiosity of all other patches $(j \neq i)$
E_{i} is the emitted energy of the patch
R_{i} is the reflectivity of the patch
$F_{i j}^{i}$ is the view factor of energy from patch i to patch j.

Radiosity—form factors

- Finding form factors can be done procedurally or dynamically
- Can subdivide every surface into small patches of similar size
- Can dynamically subdivide wherever the $1^{\text {st }}$ derivative of calculated intensity rises above some threshold.
- Computing cost for a general radiosity solution goes up as the square of the number of patches, so try to keep patches down. - Subdividing a large flat white wall could be

- Patches should ideally closely align with lines of shadow.

Radiosity—view factors

One equation for the view factor between patches i, j is:
$F i \rightarrow j=\frac{\cos \theta_{i} \cos \theta_{j}}{\pi \cdot{ }^{2}} V(i, j)$
where θ_{j} is the angle between the normal of patch i and the line to patch j, r is the distance and $V(i, j)$ is the visibility from i to j (0 for occluded, 1 for clear line of sight.)

Radiosity-calculating visibility

- Calculating $V(i, j)$ can be slow.
- One method is the hemicube, in which each form factor is encased in a half-cube. The scene is then 'rendered' from the point of view of the patch, through the walls of the hemicube; $V(i, j)$ is computed for each patch based on which patches it can see (and at what percentage) in its patch based
- A purer method, but more computationally expensive, uses hemispheres.

Radiosity gallery

Shadows, refraction and caustics

- Problem: shadow ray strikes transparent, refractive object.
- Refracted shadow ray will now miss the light.
- This destroys the validity of - the boolean shadow test
- Problem: light passing through a refractive object will sometimes form caustics (right), artifacts where the envelope of a collection of rays falling on the surface is bright enough to be visible.

Shadows, refraction and caustics

- Solutions for shadows of transparent objects:
- Backwards ray tracing (Arvo)
- Very computationally heavy
- Improved by stencil mapping (Shenva et al)
- Shadow attenuation (Pierce)
- Low refraction, no caustics
- More general solution:
- Photon mapping (Jensen) \rightarrow

Photon mapping

Photon mapping is the process of emitting photons into a scene and tracing their paths probabilistically to build a photon map, a data structure which describes the
illumination of the scene independently of its geometry.

This data is then combined with ray tracing to compute the global illumination of the scene.

Photon mapping-algorithm (1/2)
Photon mapping is a two-pass algorithm:

1. Photon scattering

A. Photons are fired from each light source, scattered in randomly-chosen directions. The number of photons per light is a function of its surface area and brightness.
B. Photons fire through the scene (re-use that raytracer, folks.) Where they strike a surface they are either absorbed, reflected or refracted.
C. Wherever energy is absorbed, cache the location, direction and energy of the photon in the photon map. The photon map data structure must support fast insertion and fast nearest-neighbor lookup; a $k d$-tree ${ }^{1}$ is often used.

Photon mapping-algorithm (2/2)
Photon mapping is a two-pass algorithm:

2. Rendering

A. Ray trace the scene from the point of view of the camera
B. For each first contact point P use the ray tracer for specular but compute diffuse from the photon map and do away with ambient completely.
C. Compute radiant illumination by summing the contribution along the eye ray of all photons within a sphere of radius r of P.
D. Caustics can be calculated directly here from the photon map. For speed, the caustic map is usually distinct from the radiance map.

Photon mapping is probabilistic
This method is a great example of Monte Carlo integration, in which a difficult integral (the lighting equation) is simulated by randomly sampling values from within the integral's domain until enough samples average out to about the right answer.

- This means that you're going to be
firing millions of photons. Your data structure is going to have to be very space-efficient.

http://www.okino.com/conv/imp it htm

Photon mapping is probabilistic

- Initial photon direction is random. Constrained by light shape, but random.
- What exactly happens each time a photon hits a solid also has a random component:
- Based on the diffuse reflectance, specular reflectance and transparency of the surface, compute probabilities $p_{d} p_{s}$ and p_{t} where $\left(p_{d}+p_{s}+p_{t}\right) \leq 1$. This gives a probability map:
 probability map of the surface determines whether the photon is reflected, refracted or absorbed.

References

Shirley and Marschner, "Fundamentals of Computer Graphics", Chapter 24 (2009) Radiosity

- nVidia: http://http.developer.nvidia.com/GPUGems2/gpugems2 chapter39.html
- Cornell: http://www.graphics.cornell.edu/online/research

Wallace, J. R., K. A. Elmquist, and E. A. Haines. 1989, "A Ray Tracing Algorithm for Progressive Radiosity." In Computer Graphics (Proceedings of SIGGRAPH 89) 23(4), pp. 315-324.
Buss, "3-D Computer Graphics: A Mathematical Introduction with OpenGL" (Chapter XI), Cambridge University Press (2003)

Photon mapping
Henrik Jenson, "Global Illumination using Photon Maps": http://graphics.ucsd.

- Zack Waters, "Photon Mapping": http://web.cs.wpi.

Zack Waters, "Photon Mapping": http://web.cs.wpi.

